

Abstract—SLAM (Simultaneous Localization and Mapping)

is on the forefront of today's robotic research. Over the past 10

years a variety of SLAM "solutions" have been discussed in

academia. One of the earlier methods of SLAM involved using

artificial landmarks to help make the feature extraction aspect

of SLAM more manageable. While there are more complex

SLAM solutions available, this implementation is unique in its

method of feature extraction. Since the intensity of colors

change drastically, the robot uses a trained multinomial

logistic function (supervised learning) to classify image pixels.

A version k-means clustering (unsupervised learning) was

implemented using a novel approach for determining cluster

quantities and centers to ultimately find landmarks.

Monocular SLAM is a more difficult problem than LIDAR

SLAM in that features provide bearing only data.

Furthermore, a reasonable estimate of a landmarks location

from one image is not possible. A method for adding

landmarks to map was developed as well as associating

landmarks in the current image to those already in the map.

Lastly, an Extended Kalman Filter was implemented to fuse 2D

odometry data with measurement updates.

I. INTRODUCTION

magine a robot that is sitting in a completely known

environment. Localizing oneself within the environment

becomes a fairly simple task (one could simply use Markov

localization). Conversely, imagine a robot that knew its

location perfectly in an unknown environment. Developing a

map would be as simple filling an occupancy grid from laser

range finder data. But what if the robot knows neither its

location nor the environment? This is the domain of

Simultaneous Localization and Mapping (SLAM), sometimes

also called Concurrent Mapping and Localization (CML).

 SLAM is "one of the most fundamental problems in

robotics." [1] The problem is difficult because creating a

map depends on localization and vice versa. One of the first

full comprehensive solutions to SLAM is presented in

Dissanayake et al. A Solution to the Simultaneous Map

Building (SLAM) Problem paper [2]. The paper describes a

potential estimation-theoretic Kalman filter approach for

providing a solution to the full SLAM problem (paper

proves what was shown in SLAM lecture). Since this paper,

many more "solutions" to SLAM problem have come about

(ie. Extended Kalman Filters, Unscented Kalman Filters, and

so on). One of the difficult aspects of SLAM, which the

paper does not go into depth on, is landmark selection. To

solve the SLAM problem, one must choose features of

interest (landmarks) and then use these to localize and map.

Proper selection of landmarks in a map is one topic in the

forefront of research today.

 The project described below assumes no knowledge

of landmarks other than a color (red, pink, orange, yellow,

purple, green). This is different from the midterm project

which assumed landmark location was also known. All the

code required for the SLAM solution was written personally

by the solitary author. This includes but is not limited too,

UDP communicator wrapper, K-means clustering algorithm,

multinomial logistic pixel classifier, full implementation of

EKF, data association, map management, camera model, and

transformation functions. There is a short video which was

submitted as well for demo day. There is more video that

can be submitted that shows more errors in the algorithm if

is needed. A copy of the authors k-means clustering

implementation will also be attached. The only program that

was not written by the author was SMLR, which was used to

calculate the weights for the multinomial logistic function.

Other than that, no special MATLAB code was used other

than plot commands, and inverse matrix commands, so the

code can easily be ported to any other language with proper

changing of syntax and indices.

II. BACKGROUND

The past 10 years has seen extensive research on SLAM

methods. Numerous survey papers have been written, but

one (name) was done specifically on bearing-only SLAM

[3]. Various techniques for bearing-only SLAM exist,

including particle filter SLAM [4][5] and the most frequent

EKF SLAM [3]. Different methods for landmark

initialization include standard Gaussian initialization as in

[6], depth paramaterization [7] and initialization through

sum of Gaussians to approximate a uniform distribution

(GSF)[8]. Furthermore many different feature extractors

have been used including lines as in [6], corners [9], sift

features, and color as in [10],

III. ROBOT

A. Hardware

 The platform being used is the Pioneer P3-DX robot

made by MobileRobots. The robot has an onboard mini-ITX

computer as a Hokuyo LIDAR unit and a camera with 38

degrees field view. The robot has two rear wheels, each

controlled by an independent motor. In the front there is a

single caster. The mechanical design of the robot allows it to

be accurately modeled as a 3 DOF (x,y,theta) system in 2D.

Because of the front caster and independent wheels the

DOFs can be successfully decoupled (ASL Wiki).

Monocular Simultaneous Localization and Mapping using Color

Features

Jason P. Moran, Member, Mechanical Engineering ‘11

I

 Currently, the mini-ITX computer runs Linux and has an

ORCA framework installed for communicating with the

robot. The ORCA framework is difficult to create

components in so the robot will be run using a UDP

communicator in MATLAB. Using the UDP communicator

limits the speed of the measurement update since only about

9 frames per second can be sent through the communicator.

Furthermore the resolution of these frames must be reduced

using a standard jpeg compression format from 640 x 480 to

320 x 240 to allow high enough fps for a successful SLAM

solution. The fire wire camera being used has a maximum

focal length of 4.3mm (optimal focus is about 2mm), a pixel

size of 5.6um, and 2.5 key frames per second.

B. Robot Model

 As described above, the robot can be modeled using

standard (x,y,φ) state space. There are a few necessary

transformations that must be made to put the measurement

into the same coordinate system as odometry. First, the

odometry center must be transformed from its position at the

center of the wheels to the center of the rover. This can be

accomplished with a simple rotation matrix, and translation

can be ignored since the state space model does not include a

third dimension.

The next aspect to consider is the transformation from a

point in an image to a position relative to the robot camera to

determine a bearing. This bearing can be determined using a

simple pinhole camera model. Fig 2. details this camera

model. Here, f is focal length, u0 is the principal point

(typically the center of the image), and u is a pixel location.

Fig.2 Camera Model

 Eq. 1

 Since the camera is not at the center of the robot the

camera coordinate system would need to be transformed into

the robot coordinate system. It is easiest to perform this

transformation post measurement and data association.

The final, and most important aspect is how a potential

landmark appears relative to the robot in a global reference

frame. This ultimately determines the measurement

equation that will be used, along with its Jacobian, in the

extended Kalman filter.

Fig 3. Robot in global reference frame.

Fig 3. above depicts the robot in its global coordinate

frame. Here the coordinate of the robot are (x,y,φ) and the

coordinates of the feature can be represented by (xL, yL).

The resulting measurement equation and its Jacobian

components are.

 Eq. 2

 Eq. 3

 Eq. 4

 Eq. 5

Where

 Eq. 6

IV. METHODS

A. General Flow

The SLAM algorithm has many necessary components,

each of which are an area of research in computer science.

The following flowchart (Fig 4.) depicts interconnectedness

of all the SLAM components.

Landmark

θ

f

u0 u

Image

Robot

y θ

x

φ

Feature

Figure 4. Flow Chart

B. Feature Extraction

The features being used are colored cones and tubes, with

hope that these can be extended to lamp posts, telephone

posts, and trees. The objects have cylindrical cross sections

so that their center will be the same viewed from any angle,

the producing an extremely stable feature.

 The first attempt at producing color segmentation feature

extraction produced unreliable and sparse data. First a

median filter was applied to remove random noise and

incorrect color mapping by the CCD. Sample RGB values

were taken for each landmark, and statistics of the data were

computed. Pixels were classified if they and their neighbors

fell within a specified amount of standard deviations from

the mean for each color channel. This method proved

unreliable since the cameras exposure and thus intensity

change greatly, especially when the robot was moving.

Recalculating statistics for a wide range of intensities

resulted in large standard deviations and falsely classified

many pixels. An attempt was then made to move to a color

mapping that was independent of intensity. RG chromaticity

was used (Ratio of colors to the total image intensity). This

worked better, but required a large amount of hand tuning.

 To avoid tuning frustration, supervised learning was

employed. Not only did it get rid of tuning but it also

classified pixels much more accurately. A Multinomial

Logistic Function was used to classify pixels and create a

segmented image for each color. Weights were created by

using a training set of 7 classes (6 different colors and one

other category). The training set was taken over a wide

range of image intensities and both with the robot moving

and without. Each class had 200 data points and weights

were obtained using SMLR, a java program from Duke

University. The state vector for the equation was the three

RGB values. This yields 4 weights, one for each value and

an offset. Using the weights obtained from the program, the

equation (number) gives the probability that a pixel is a

specific color. Only pixels with a probability of greater that

75% were accepted.

Fig. 5 Original Image at resolution 320 x 240

Fig 6. Segmentation of color pink

Fig 7. Segmentation of color orange

 With the segmented images it was necessary to find the

number of objects, identified by white pixels. One method

would be to implement a blob filter. This method was

initially employed. Blobs were initially kept if they were

greater than a certain size. This method would often

produce too many blobs because a landmark may be

represented by a sparse segmentation. If landmarks had

words, were partially occluded, or patches of another color,

it was important that they still be classified as one landmark.

Odometry
Data

Association Time

Update

Measurement
Update

Camera
Feature

Extraction

Map

Management

 Unsupervised learning was then performed on each of the

segmented images. An implementation of k-means

clustering was personally written, and a novel method for

choosing cluster centers and guesses was created. The

method entailed searching columns and rows for white

pixels. If the pixels were close to other pixels they would be

considered one cluster. The k-means clustering algorithm

written was sensitive to guesses for cluster centers.

Originally simple elbow method program was written to

choose k. This program chose k accurately sometimes but

did provide proper guesses for cluster centers. Improper

guesses as to cluster numbers and centers would result in

creating inexistent features or determining feature centers

unreliably.

 The feature extraction algorithm is independent of feature

size and shape (features with circular cross sections only

necessary for stability) and the object does not need to be a

uniform color, and can have writing, tape marks, holes, etc.

It was designed this way so it could be extended easily to

other objects easily.

Fig. 8 Shows center identification. Extractor even pulls out

the small pink beacon far away.

Fig. 9 Shows center estimate for orange cone. Notice

detection does not depend on shape.

C. Data Association

Using the state from after the time update, an expected

angle in image is calculated for all features in the map.

Features found in the current image are compared with map

features of the same color and a chi-squared hypothesis test

is used to determine if features are a match. The test takes

into account the positional variance of the robot as well as

the variance of the feature, it is described in equation which

was derived from [6] Data association in this

implementation of SLAM is extremely dependent on prior

pose estimate. If the robot makes a few bad data

associations and has a few bad measurement updates, pose

will be miss calculated and all future data associations are

likely to be incorrect.

D. Map Management

Map management is another aspect of importance. Features

in the map must be reliable as they are ultimately use in the

measurement update of the EKF. If inexistent features find

their way into the map it can ruin data association.

Furthermore if features are too densely packed, have

variances that are too large, or are sparse, it can cause

serious problems. To deal with this, a temporary map was

created along with a set of map management rules. The rules

were decided independently by the author. Essentially, the

rules are as follows:

1) If a detected feature is associated with a map feature,

the feature's variance is updated if the robots state variance

is below a threshold. The feature measurement will then

be used for a measurement update.

2) If the feature does not associate with a map feature, the

temporary map is checked for possible associations.

3) If there is a positive association with the temporary

map, the feature's variance is updated regardless of state

variance.

4) The map is checked for features with variances that are

too high. These features are moved to the temporary map.

5) The temporary map is checked for features with low

variance, and these features are moved to the map.

6) The temporary map is pruned. Features with very large

variances are permanently removed to avoid poor data

association with the temporary map.

7) Features that were in neither map were added to a

temporary map.

The last part of map management is feature initialization.

Various papers have been written on the subject but

ultimately there was not enough time to investigate the

subject fully. The method that was chosen stems from [6] as

well as the equations in the landmark initialization section of

that paper. Landmarks that have never been seen before are

initialized to be a Gaussian distribution largest in the depth

direction. The variance in the depth direction is initially set

to be the length of the room while the variance perpendicular

to depth is dependent on angular variance, which is a

function of camera resolution.

Fig 10. Landmark first initialized to a large Gaussian. Than

after combining multiple Gaussians at different angles, a low

variance is obtained and a strong estimate of feature location

is obtained.

E. Extended Kalman Filter

The last aspect of the SLAM is the filter which merges

measurement data with time data. Two models were

considered for the time update. One was the velocity model

which uses, vehicle velocities as a method for time update.

The other method, which was ultimately chosen, is the

odometry driven model described in Thrun's Probabilistic

Robotics. The measurement update can then be easily

obtained with the measurement Jacobian in equations 3-5

and the variance of the landmark.

V. RESULTS

The components described above for were combined and

run on the pioneer in the ASL lab. Odometry Time updates

occurred at a rate of 30 hz, while measurement updates

could only take place at 5hz. This low measurement update

rate can be partially attributed to the low frame rate

transmission rate of the camera. Each frame at 320 x 240

took roughly a eighth of a second to transmit. Then

processing (including segmentation, k-means, and data

association) was clocked to be an average .146 seconds. As

a result, an image was not always available after image

processing and measurement update had been complete.

The feature extractor built was extremely successful at

detecting landmarks. The image classifier (multinomial

logistic classifier) when tested on a different data set of

equal size achieved a 98.28% success rate with most miss

classifications coming between red and pink as well as green

and background. The segmentation used a high probability

threshold for successful classification. This high threshold

result in only 90% being classified correctly, with a vast

majority of miss classifications being to background (thus

black in segmentation).

The next part of the feature extractor was the k-means

clustering algorithm and the novel choose k algorithm.

These two algorithms, correctly identified all landmarks

91% of the time. Most miss classification occurred when

landmarks of the same color were too close together, the

landmark had sufficient glare, or was sufficiently far away.

The overall result is that the algorithm was capable of

detecting landmarks 84% of the time (data set of 100). A

majority of failed cases were a landmark was not identified

at all. This lack of identification is the best scenario as it

does not mess with feature variances in data association or

map management.

Finally, the robot was capable of doing SLAM but only

minimally. A difficult aspect that occurred was initializing

new landmarks. Since, the camera field of view was only

42.25 degrees, landmarks could not be initialized with

simply one pass. As a result the robot would have to drive

around the landmark continuously looking for the feature.

After this length path and turning, a few features could be

initialized, but this is only after odometry was running for a

sufficient period of time, thus the uncertainty of the physical

robot was high by the time the features could be initialized.

As a result careful placement of the features was needed, and

fine tuning of the map management system was needed.

One way this could be improved, and many authors have

done this, is to use either a wide angle lense and apply

distortion filter, or to have a camera then can rotate

independently of the robot. Either technique drastically

increases the field of view and makes landmark initialization

substantially easier. One only need to drive straight past a

landmark for the long Gaussians to stack up well enough to

initialize the feature.

 Below is an image taken from the MATLAB window

which shows feature identification and localization of

position. The red line indicates the pose of the robot and the

scale is in millimeters. In the image taken the robot

localized itself to 5cm from the true position reported by

Vicon. Notice the orange cone in the back left. This cone

was not classified because it was a different color orange

then was trained on. This show how strong the classifier is

at not making misclassifications in favor of more features.

Instead the classifier is picky, notice it did not pick out the

green cone to the right?

Fig. 11 Localization from landmarks.

VI. FUTURE WORK

Better map management is needed for this algorithm to be

successful. Measurement updates only occur at 5hz due

largely to the UDP communicator. Making the code run

natively would increase speed of algorithm. The camera had

a difficult time focusing and adjusting to light changes. A

better video camera with higher resolution might help with

feature extraction (would also make algorithm take longer).

Furthermore, a camera with a wider view or a camera that

could rotate independently would increase landmark

initialization. If I had time I would have created a map that

is seen in most standard SLAM papers. This is a map of

odometry, SLAM, and truth. I would also have like to have

tested the SLAM portion of the algorithm on a few famous

data sets such as the Victoria Park data set. This would have

been helpful to compare to other algorithms. Lastly, better

methods for data association could be used to help weed out

bad landmarks.

APPENDIX

Please see submitted video and matlab code.

ACKNOWLEDGMENT

I would like to thank Professor Campbell and Professor

Kress-Gazit for the use of the Autonomous Systems Lab. I

would also like to thank everyone in the Autonomous

Systems Lab for putting up with my questions. I would also

like to thank Professor Saxena. You were more readily

available then any professor I have had at Cornell and were

always willing to meet to answer my questions. Who else

would answer a distressed G-chat at midnight?

REFERENCES

[1] Thrun, S.; Burgard, W.; Fox, D.. Probabilistic Robotics.

2005. ISBN 0262201623. MIT Press.

[2] Dissanayake, M. W. M. G., Newman, P., Clark, S.,

Durrant-Whyte, H. F., and Csorba, M. solution to the

simultaneous localization and map building (slam)

problem. IEEE Transactions on Robotics and Automation,

17, 3 (June 2001), 229-241.

[3] K. E. Bekris, M. Glick, and L. Kavraki, “Evaluation of

algorithms for bearing-only SLAM,” in Proceedings of the

2006 IEEE International Conference on Robotics and

Automation, May 2006.

[4] N. M. Kwok and G. Dissanayake. Bearing-only slam in

indoor environments using a modified particle filter. In

Australasian Conference on Robotics and Automation,

Brisbane, Australia, Dec. 1-3 2003.

[5] M. Pupilli and A. Calway. Real-time camera tracking using

a particle filter. In Proc. British Machine Vision

Conference, pages 519–528, Oxford, UK, 2005.

[6] N. M. Kwok and G. Dissanayake. Bearing-only slam in

indoor environments using a modified particle filter. In

Australasian Conference on Robotics and Automation,

Brisbane, Australia, Dec. 1-3 2003.

[7] A. Costa, G. Kantor, and H. Choset. Bearing-only landmark

initialization with unknown data association. In ICRA-04,

pages 1764–1769, New Orleans, LA, April 2004.

[8] J. M. M. Montiel, J. Civera, and A. J. Davison. Unified

inverse depth parameterization for monocular SLAM. In

Proc. Robotics: Science and Systems, Philadelphia, USA,

2006.

[9]] N. M. Kwok, G. Dissanayake, and Q. P. Ha. Bearing-only

slam using a sprt based Gaussian sum filter. In ICRA-05,

pages 1121–1126, Barcelona, Spain, April 2005.

[10] A. J. Davison. Real-time simultaneous localization and

mapping with a single camera. In Proc. IEEE International

Conference on Computer Vision, pages 1403–1410, 2003.

[11] T. Lemaire, S. Lacroix, and J. Sola. A practical 3D bearing-

only SLAM algorithm. In IROS’2005, pages 2757–2762,

Edmonton, Canada, 2-6 Aug. 2005.

[12] Bulata, H., and Devy, M. Incremental construction of a

landmark-based and topological model of indoor

environments by a mobile robot. In ICRA (Minneapolis

(USA), 1996).

