
  

 

Abstract—SLAM (Simultaneous Localization and Mapping) 

is on the forefront of today's robotic research. Over the past 10 

years a variety of SLAM "solutions" have been discussed in 

academia. One of the earlier methods of SLAM involved using 

artificial landmarks to help make the feature extraction aspect 

of SLAM more manageable. While there are more complex 

SLAM solutions available, this implementation is unique in its 

method of feature extraction.   Since the intensity of colors 

change drastically, the robot uses a  trained multinomial 

logistic function (supervised learning) to classify image pixels. 

A version k-means clustering (unsupervised learning) was 

implemented using a novel approach for determining cluster 

quantities and centers to ultimately find landmarks.  

Monocular SLAM  is a more difficult problem than LIDAR 

SLAM in that features provide bearing only data.  

Furthermore, a reasonable estimate of a landmarks location 

from one image is not possible.  A method for adding 

landmarks to map was developed as well as associating 

landmarks in the current image to those already in the map.  

Lastly, an Extended Kalman Filter was implemented to fuse 2D 

odometry data with measurement updates. 

I. INTRODUCTION 

magine a robot that is sitting in a completely known 

environment. Localizing oneself within the environment 

becomes a fairly simple task (one could simply use Markov 

localization). Conversely, imagine a robot that knew its 

location perfectly in an unknown environment. Developing a 

map would be as simple filling an occupancy grid from laser 

range finder data. But what if the robot knows neither its 

location nor the environment? This is the domain of 

Simultaneous Localization and Mapping (SLAM), sometimes 

also called Concurrent Mapping and Localization (CML). 

 SLAM is "one of the most fundamental problems in 

robotics." [1] The problem is difficult because creating a 

map depends on localization and vice versa. One of the first 

full comprehensive solutions to SLAM is presented in 

Dissanayake et al. A Solution to the Simultaneous Map 

Building (SLAM) Problem paper [2]. The paper describes a 

potential estimation-theoretic Kalman filter approach for 

providing a solution to the full SLAM problem (paper 

proves what was shown in SLAM lecture). Since this paper, 

many more "solutions" to SLAM problem have come about 

(ie. Extended Kalman Filters, Unscented Kalman Filters, and 

so on). One of the difficult aspects of SLAM, which the 

paper does not go into depth on, is landmark selection. To 

solve the SLAM problem, one must choose features of 

interest (landmarks) and then use these to localize and map. 

 
 

Proper selection of landmarks in a map is one topic in the 

forefront of research today. 

 The project described below assumes no knowledge 

of landmarks other than a color (red, pink, orange, yellow, 

purple, green).  This is different from the midterm project 

which assumed landmark location was also known.  All the 

code required for the SLAM solution was written personally 

by the solitary author.  This includes but is not limited too, 

UDP communicator wrapper, K-means clustering algorithm, 

multinomial logistic pixel classifier, full implementation of 

EKF, data association, map management, camera model, and 

transformation functions.  There is a short video which was 

submitted as well for demo day.  There is more video that 

can be submitted that shows more errors in the algorithm if 

is needed.  A copy of the authors k-means clustering 

implementation will also be attached.  The only program that 

was not written by the author was SMLR, which was used to 

calculate the weights for the multinomial logistic function.  

Other than that, no special MATLAB code was used other 

than plot commands, and inverse matrix commands, so the 

code can easily be ported to any other language with proper 

changing of syntax and indices. 

II. BACKGROUND 

The past 10 years has seen extensive research on SLAM 

methods.  Numerous survey papers have been written, but 

one (name) was done specifically on bearing-only SLAM 

[3].  Various techniques for bearing-only SLAM exist, 

including particle filter SLAM [4][5] and the most frequent 

EKF SLAM [3].  Different methods for landmark 

initialization include standard Gaussian initialization as in 

[6], depth paramaterization [7] and initialization through 

sum of Gaussians to approximate a uniform distribution 

(GSF)[8].  Furthermore many different feature extractors 

have been used including lines as in [6], corners [9], sift 

features, and color as in [10], 

III. ROBOT 

A. Hardware 

     The platform being used is the Pioneer P3-DX robot 

made by MobileRobots. The robot has an onboard mini-ITX 

computer as a Hokuyo LIDAR unit and a camera with 38 

degrees field view. The robot has two rear wheels, each 

controlled by an independent motor. In the front there is a 

single caster. The mechanical design of the robot allows it to 

be accurately modeled as a 3 DOF (x,y,theta) system in 2D. 

Because of the front caster and independent wheels the 

DOFs can be successfully decoupled (ASL Wiki). 
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 Currently, the mini-ITX computer runs Linux and has an 

ORCA framework installed for communicating with the 

robot. The ORCA framework is difficult to create 

components in so the robot will be run using a UDP 

communicator in MATLAB.  Using the UDP communicator 

limits the speed of the measurement update since only about 

9 frames per second can be sent through the communicator.  

Furthermore the resolution of these frames must be reduced 

using a standard jpeg compression format from 640 x 480 to 

320 x 240 to allow high enough fps for a successful SLAM 

solution.  The fire wire camera being used has a maximum 

focal length of 4.3mm (optimal focus is about 2mm), a pixel 

size of 5.6um, and 2.5 key frames per second. 

 
 

B. Robot Model 

 As described above, the robot can be modeled using 

standard (x,y,φ) state space.  There are a few necessary 

transformations that must be made to put the measurement 

into the same coordinate system as odometry.  First, the 

odometry center must be transformed from its position at the 

center of the wheels to the center of the rover.  This can be 

accomplished with a simple rotation matrix, and translation 

can be ignored since the state space model does not include a 

third dimension.   

The next aspect to consider is the transformation from a 

point in an image to a position relative to the robot camera to 

determine a bearing.  This bearing can be determined using a 

simple pinhole camera model. Fig 2. details this camera 

model.  Here, f is focal length, u0 is the principal point 

(typically the center of the image), and u is a pixel location. 

 

 

Fig.2 Camera Model  

 

  Eq. 1 

 

 Since the camera is not at the center of the robot the 

camera coordinate system would need to be transformed into 

the robot coordinate system.  It is easiest to perform this 

transformation post measurement and data association. 

The final, and most important aspect is how a potential 

landmark appears relative to the robot in a global reference 

frame.  This ultimately determines the measurement 

equation that will be used, along with its Jacobian, in the 

extended Kalman filter. 

 

Fig 3. Robot in global reference frame. 

 

Fig 3. above depicts the robot in its global coordinate 

frame.  Here the coordinate of the robot are (x,y,φ) and the 

coordinates of the feature can be represented by (xL, yL).  

The resulting measurement equation and its Jacobian 

components are. 

  Eq. 2 

 

    Eq. 3 

 

    Eq. 4 

 

        Eq. 5 

 

Where 

 

       Eq. 6 
 

 

IV. METHODS 

A. General Flow 

The SLAM algorithm has many necessary components, 

each of which are an area of research in computer science.  

The following flowchart (Fig 4.) depicts interconnectedness 

of all the SLAM components. 
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Figure 4. Flow Chart 

B. Feature Extraction 

The features being used are colored cones and tubes, with 

hope that these can be extended to lamp posts, telephone 

posts, and trees.  The objects have cylindrical cross sections 

so that their center will be the same viewed from any angle, 

the producing an extremely stable feature. 

 The first attempt at producing color segmentation feature 

extraction produced unreliable and sparse data.  First a 

median filter was applied to remove random noise and 

incorrect color mapping by the CCD.  Sample RGB values 

were taken for each landmark, and statistics of the data were 

computed.  Pixels were classified if they and their neighbors 

fell within a specified amount of standard deviations from 

the mean for each color channel.  This method proved 

unreliable since the cameras exposure and thus intensity 

change greatly, especially when the robot was moving.  

Recalculating statistics for a wide range of intensities 

resulted in large standard deviations and falsely classified 

many pixels.  An attempt was then made to move to a color 

mapping that was independent of intensity.  RG chromaticity 

was used (Ratio of colors to the total image intensity).  This 

worked better, but required a large amount of hand tuning. 

 To avoid tuning frustration, supervised learning was 

employed.  Not only did it get rid of tuning but it also 

classified pixels much more accurately. A Multinomial 

Logistic Function was used to classify pixels and create a 

segmented image for each color.  Weights were created by 

using a training set of 7 classes (6 different colors and one 

other category).  The training set was taken over a wide 

range of image intensities and both with the robot moving 

and without.  Each class had 200 data points and weights 

were obtained using SMLR, a java program from Duke 

University. The state vector for the equation was the three 

RGB values.  This yields 4 weights, one for each value and 

an offset.  Using the weights obtained from the program, the 

equation (number) gives the probability that a pixel is a 

specific color.  Only pixels with a probability of greater that 

75% were accepted. 

 

 
 

Fig. 5 Original Image at resolution 320 x 240 

 

 
 

Fig 6. Segmentation of color pink 

 

 
 

Fig 7. Segmentation of color orange 

 

 With the segmented images it was necessary to find the 

number of objects, identified by white pixels.  One method 

would be to implement a blob filter.  This method was 

initially employed.  Blobs were initially kept if they were 

greater than a certain size.  This method would often 

produce too many blobs because a landmark may be 

represented by a sparse segmentation.  If landmarks had 

words, were partially occluded, or patches of another color, 

it was important that they still be classified as one landmark.  
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 Unsupervised learning was then performed on each of the 

segmented images. An implementation of k-means 

clustering was personally written, and a novel method for 

choosing cluster centers and guesses was created.  The 

method entailed searching columns and rows for white 

pixels.  If the pixels were close to other pixels they would be 

considered one cluster.  The k-means clustering algorithm 

written was sensitive to guesses for cluster centers. 

Originally simple elbow method program was written to 

choose k.  This program chose k accurately sometimes but 

did provide proper guesses for cluster centers.  Improper 

guesses as to cluster numbers and centers would result in 

creating inexistent features or determining feature centers 

unreliably.  

 The feature extraction algorithm is independent of feature 

size and shape (features with circular cross sections only 

necessary for stability) and the object does not need to be a 

uniform color, and can have writing, tape marks, holes, etc.  

It was designed this way so it could be extended easily to 

other objects easily. 

 
 

Fig. 8 Shows center identification.  Extractor even pulls out 

the small pink beacon far away. 

 

 
 

Fig. 9 Shows center estimate for orange cone.  Notice 

detection does not depend on shape. 

C. Data Association 

Using the state from after the time update, an expected 

angle in image is calculated for all features in the map. 

Features found in the current image are compared with map 

features of the same color and a chi-squared hypothesis test 

is used to determine if features are a match.  The test takes 

into account the positional variance of the robot as well as 

the variance of the feature, it is described in equation which 

was derived from [6] Data association in this 

implementation of SLAM is extremely dependent on prior 

pose estimate.  If the robot makes a few bad data 

associations and has a few bad measurement updates, pose 

will be miss calculated and all future data associations are 

likely to be incorrect.   

 

D. Map Management 

Map management is another aspect of importance.  Features 

in the map must be reliable as they are ultimately use in the 

measurement update of the EKF.  If inexistent features find 

their way into the map it can ruin data association.  

Furthermore if features are too densely packed, have 

variances that are too large, or are sparse, it can cause 

serious problems.  To deal with this, a temporary map was 

created along with a set of map management rules. The rules 

were decided independently by the author.  Essentially, the 

rules are as follows: 

 

1) If a detected feature is associated with a map feature, 

the feature's variance is updated if the robots state variance 

is below a threshold.  The feature measurement will then 

be used for a measurement update. 

2) If the feature does not associate with a map feature, the 

temporary map is checked for possible associations. 

3) If there is a positive association with the temporary 

map, the feature's variance is updated regardless of state 

variance. 

4) The map is checked for features with variances that are 

too high.  These features are moved to the temporary map. 

5) The temporary map is checked for features with low 

variance, and these features are moved to the map. 

6) The temporary map is pruned.  Features with very large 

variances are permanently removed to avoid poor data 

association with the temporary map. 

7) Features that were in neither map were added to a 

temporary map. 

 

The last part of map management is feature initialization.  

Various papers have been written on the subject but 

ultimately there was not enough time to investigate the 

subject fully.  The method that was chosen stems from [6] as 

well as the equations in the landmark initialization section of 

that paper.  Landmarks that have never been seen before are 

initialized to be a Gaussian distribution largest in the depth 

direction.  The variance in the depth direction is initially set 

to be the length of the room while the variance perpendicular 

to depth is dependent on angular variance, which is a 

function of camera resolution. 

 

 

 

 

 



  

 

 
 

Fig 10. Landmark first initialized to a large Gaussian.  Than 

after combining multiple Gaussians at different angles, a low 

variance is obtained and a strong estimate of feature location 

is obtained. 

E. Extended Kalman Filter 

The last aspect of the SLAM is the filter which merges 

measurement data with time data.  Two models were 

considered for the time update.  One was the velocity model 

which uses, vehicle velocities as a method for time update.  

The other method, which was ultimately chosen, is the 

odometry driven model described in Thrun's Probabilistic 

Robotics.  The measurement update can then be easily 

obtained with the measurement Jacobian in equations 3-5  

and the variance of the landmark. 

V. RESULTS 

The components described above for were combined and 

run on the pioneer in the ASL lab.  Odometry Time updates 

occurred at a rate of 30 hz, while measurement updates 

could only take place at 5hz.  This low measurement update 

rate can be partially attributed to the low frame rate 

transmission rate of the camera.  Each frame at 320 x 240 

took roughly a eighth of a second to transmit.  Then 

processing (including segmentation, k-means, and data 

association)  was clocked to be an average .146 seconds.  As 

a result, an image was not always available after image 

processing and measurement update had been complete.   

The feature extractor built was extremely successful at 

detecting landmarks.  The image classifier (multinomial 

logistic classifier) when tested on a different data set of 

equal size achieved a 98.28% success rate with most miss 

classifications coming between red and pink as well as green 

and background. The segmentation used a high probability 

threshold for successful classification.  This high threshold 

result in only 90% being classified correctly, with a vast 

majority of miss classifications being to background (thus 

black in segmentation).  

The next part of the feature extractor was the k-means 

clustering algorithm and the novel choose k algorithm.  

These two algorithms, correctly identified all landmarks 

91% of the time.  Most miss classification occurred when 

landmarks of the same color were too close together, the 

landmark had sufficient glare, or was sufficiently far away. 

The overall result is that the algorithm was capable of 

detecting landmarks 84% of the time (data set of 100).  A 

majority of failed cases were a landmark was not identified 

at all.  This lack of identification is the best scenario as it 

does not mess with feature variances in data association or 

map management. 

Finally, the robot was capable of doing SLAM but only 

minimally.  A difficult aspect that occurred was initializing 

new landmarks.  Since, the camera field of view was only 

42.25 degrees, landmarks could not be initialized with 

simply one pass.  As a result the robot would have to drive 

around the landmark continuously looking for the feature.  

After this length path and turning, a few features could be 

initialized, but this is only after odometry was running for a 

sufficient period of time, thus the uncertainty of the physical 

robot was high by the time the features could be initialized.  

As a result careful placement of the features was needed, and 

fine tuning of the map management system was needed.  

One way this could be improved, and many authors have 

done this, is to use either a wide angle lense and apply 

distortion filter, or to have a camera then can rotate 

independently of the robot.  Either technique drastically 

increases the field of view and makes landmark initialization 

substantially easier.  One only need to drive straight past a 

landmark for the long Gaussians to stack up well enough to 

initialize the feature.  

 Below is an image taken from the MATLAB window 

which shows feature identification and localization of 

position.  The red line indicates the pose of the robot and the 

scale is in millimeters.  In the image taken the robot 

localized itself to 5cm from the true position reported by 

Vicon.  Notice the orange cone in the back left.  This cone 

was not classified because it was a different color orange 

then was trained on.  This show how strong the classifier is 

at not making misclassifications in favor of more features.  

Instead the classifier is picky, notice it did not pick out the 

green cone to the right? 

 

 
 

Fig. 11 Localization from landmarks. 

 

 

 

 



  

VI. FUTURE WORK 

Better map management is needed for this algorithm to be 

successful.  Measurement updates only occur at 5hz due 

largely to the UDP communicator.  Making the code run 

natively would increase speed of algorithm. The camera had 

a difficult time focusing and adjusting to light changes.  A  

better video camera with higher resolution might help with 

feature extraction (would also make algorithm take longer).  

Furthermore, a camera with a wider view or a camera that 

could rotate independently would increase landmark 

initialization.  If I had time I would have created a map that 

is seen in most standard SLAM papers.  This is a map of 

odometry, SLAM, and truth.  I would also have like to have 

tested the SLAM portion of the algorithm on a few famous 

data sets such as the Victoria Park data set.  This would have 

been helpful to compare to other algorithms.  Lastly, better 

methods for data association could be used to help weed out 

bad landmarks. 

APPENDIX 

Please see submitted video and matlab code. 
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